Dynamically Aggregating Diverse Information

Annie Liang1 Xiaosheng Mu2 Vasilis Syrgkanis3

1University of Pennsylvania
2Columbia University 3Microsoft Research
Introduction

- in many learning problems, don’t have access to information about exactly what you want to know
- instead aggregate related information
- e.g. suppose a hotel chain wants to forecast demand for a new location in Puerto Rico
- can’t directly learn about this, but can learn about different components:
 - website traffic to the Puerto Rico tourism bureau provides estimate of tourism travel
 - Google search data for local conference venues provides estimate of business travel
- improve forecasting by aggregating this data
- how to acquire data over time, given limited resources?
Our Model

- decision-maker (DM) seeks to learn Gaussian state
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
- state is a linear combination of unknown attributes
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
- state is a linear combination of unknown attributes (vacation travel, business travel, etc.)
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
- state is a linear combination of unknown attributes (vacation travel, business travel, etc.)
- attributes are potentially correlated
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)

- state is a linear combination of unknown attributes (vacation travel, business travel, etc.)

- attributes are potentially correlated (vacation travel from US, vacation travel from Mexico)
Our Model

- decision-maker (DM) seeks to learn Gaussian state \((\text{volume of travel to hypothetical new location in Puerto Rico})\)

- state is a linear combination of unknown attributes \((\text{vacation travel, business travel, etc.})\)

- attributes are potentially correlated \((\text{vacation travel from US, vacation travel from Mexico})\)

- DM has access to a diffusion process about each attribute, allocates attention across them
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
- state is a linear combination of unknown attributes (vacation travel, business travel, etc.)
- attributes are potentially correlated (vacation travel from US, vacation travel from Mexico)
- DM has access to a diffusion process about each attribute, allocates attention across them (e.g. employee hours)
decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)

state is a linear combination of unknown attributes (vacation travel, business travel, etc.)

attributes are potentially correlated (vacation travel from US, vacation travel from Mexico)

DM has access to a diffusion process about each attribute, allocates attention across them (e.g. employee hours)

at chosen time, stops information acquisition and takes action
Our Model

- decision-maker (DM) seeks to learn Gaussian state (volume of travel to hypothetical new location in Puerto Rico)
- state is a linear combination of unknown attributes (vacation travel, business travel, etc.)
- attributes are potentially correlated (vacation travel from US, vacation travel from Mexico)
- DM has access to a diffusion process about each attribute, allocates attention across them (e.g. employee hours)
- at chosen time, stops information acquisition and takes action (whether or not to open new location in Puerto Rico)
under assumption on prior belief (over attributes), optimal information acquisition is “simple”

- DM initially focuses all attention on one attribute
- progressively adds in new attributes
- constant attention allocation during each stage
- strategy is history-independent
under assumption on prior belief (over attributes), optimal information acquisition is “simple”

- DM initially focuses all attention on one attribute
- progressively adds in new attributes
- constant attention allocation during each stage
- strategy is history-independent

and “robust”:
- optimal across large class of payoff/cost specifications
under assumption on prior belief (over attributes), optimal information acquisition is “simple”

- DM initially focuses all attention on one attribute
- progressively adds in new attributes
- constant attention allocation during each stage
- strategy is history-independent

and “robust”:

- optimal across large class of payoff/cost specifications

applications to: binary choice, competing information providers
Plan for Talk

1. Model

2. Two Attributes

3. Many Attributes

4. Application: Binary Choice

5. Application: Competing Information Providers
Informational Environment

unknown attributes \(\theta = (\theta_1, \ldots, \theta_K) \sim \mathcal{N}(\mu, \Sigma) \)

payoff-relevant state \(\omega = \sum_{i=1}^{K} \alpha_i \theta_i \) with each \(\alpha_i > 0 \)

data sources diffusion process \(X_i \) for each \(\theta_i \)
Attention Allocation

- continuous time $t \in \mathbb{R}_+$

- allocate unit of attention across attributes at each time t
 \[(\beta^t_1, \ldots, \beta^t_K) \quad \text{where} \quad \sum_{i=1}^{K} \beta^t_i = 1 \]

- attention choices influence the diffusion processes via
 \[dX^t_i = \beta^t_i \cdot \theta_i \cdot dt + \sqrt{\beta^t_i} \cdot dB^t_i \]
 where B_i are independent standard Brownian motions.

- DM observes complete paths of each process: at each time t
 the history is $\left\{ X_i^{\leq t} \right\}_{i=1}^{K}$
Decision Problem

DM chooses

- **information acquisition strategy** S: map from histories into an attention vector
- **stopping rule** τ: map from history into decision of whether to stop sampling

Criterion:

$$\max_{S,\tau} \mathbb{E} \left[\max_a \mathbb{E}[u(a, \omega) \mid \mathcal{F}_\tau] - c(\tau) \right]$$

for some arbitrary positive increasing cost function c.
Comments on Problem

results will characterize optimal information acquisition only

- in general, S and τ would have to be determined jointly
- we show that they can be separated under a condition on the prior belief
Comments on Problem

results will characterize optimal information acquisition only

- in general, S and τ would have to be determined jointly
- we show that they can be separated under a condition on the prior belief

this is not a multi-armed bandit problem

- in MAB, actions play the dual role of influencing the evolution of beliefs and determining flow payoffs
- here they are separated
- so information acquisition decisions are driven by learning concerns exclusively
Related Literature

- **Dynamic Learning from Fixed Set of Signals:**
 Moscarini-Smith ('01), Fudenberg et al. ('18), Che-Mierendorff ('19), Mayskaya ('19)

- **Rational Inattention and Flexible Information Acquisition:**
 Steiner et al. ('09), Hébert-Woodford ('18), Zhong ('18)

- **Statistics:**
 multi-armed bandits; optimal experiment design; comparison of experiments.
Related Literature

- **Dynamic Learning from Fixed Set of Signals:**
 Moscarini-Smith ('01), Fudenberg et al. ('18), Che-Mierendorff ('19), Mayskaya ('19)
 → we allow many signals with flexible correlation

- **Rational Inattention and Flexible Information Acquisition:**
 Steiner et al. ('09), Hébert-Woodford ('18), Zhong ('18)

- **Statistics:**
 multi-armed bandits; optimal experiment design; comparison of experiments.
Related Literature

- **Dynamic Learning from Fixed Set of Signals:**
 Moscarini-Smith ('01), Fudenberg et al. ('18), Che-Mierendorff ('19), Mayskaya ('19)
 → we allow many signals with flexible correlation

- **Rational Inattention and Flexible Information Acquisition:**
 Steiner et al. ('09), Hébert-Woodford ('18), Zhong ('18)
 → our signals and information cost are “fixed”

- **Statistics:**
 multi-armed bandits; optimal experiment design; comparison of experiments.
Related Literature

• Dynamic Learning from Fixed Set of Signals:
 Moscarini-Smith ('01), Fudenberg et al. ('18), Che-Mierendorff ('19), Mayskaya ('19)
 \(\rightarrow \) we allow many signals with flexible correlation

• Rational Inattention and Flexible Information Acquisition:
 Steiner et al. ('09), Hébert-Woodford ('18), Zhong ('18)
 \(\rightarrow \) our signals and information cost are “fixed”

• Statistics:
 multi-armed bandits; optimal experiment design; comparison of experiments.
 \(\rightarrow \) our model closest to recent work on “best-arm identification”; solves “identification” between two correlated Gaussian arms
Two Sources \((K = 2)\)
Two Sources

- two unknown attributes
 \[
 \begin{pmatrix}
 \theta_1 \\
 \theta_2
 \end{pmatrix}
 \sim \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 \Sigma_{11} & \Sigma_{12} \\
 \Sigma_{21} & \Sigma_{22}
 \end{pmatrix}
 \right)
 \]

- access to two Brownian motions

- agent seeks to learn
 \[
 \omega = \alpha_1 \theta_1 + \alpha_2 \theta_2,
 \text{ where each } \alpha_i > 0.
 \]
Key Condition on Prior Beliefs

define $y_1 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12}$ and $y_2 = \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22}$.

Assumption

The prior covariance matrix satisfies $y_1 + y_2 \geq 0$.
Key Condition on Prior Beliefs

define \(y_1 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} \) and \(y_2 = \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} \).

Assumption

The prior covariance matrix satisfies \(y_1 + y_2 \geq 0 \).

loosely, this requires the two attributes to be not too negatively correlated

- always satisfied if \(\alpha_1 = \alpha_2 \)
 \[\rightarrow \text{agent wants to learn } \omega = \theta_1 + \theta_2 \]
- or \(\Sigma_{12} = \Sigma_{21} \geq 0 \)
 \[\rightarrow \text{attributes are positively correlated} \]
- or \(\Sigma_{11} = \Sigma_{22} \)
 \[\rightarrow \text{same initial uncertainty about the two attributes} \]
Theorem

Wlog let $y_1 \geq y_2$. Define

$$t_1 = \frac{y_1 - y_2}{\alpha_2 \det(\Sigma)}.$$

Under the previous assumption, the optimal attention strategy has two stages:

1. At times $t \leq t_1$, DM optimally attends only to attribute 1.
2. At times $t > t_1$, DM allocates attention in the constant fraction $\left(\beta t_1, \beta t_2\right) = \left(\alpha_1, \alpha_2\right)$.

Optimal Attention Allocation Strategy
Optimal Attention Allocation Strategy

Theorem

Wlog let \(y_1 \geq y_2 \). Define

\[
t_1 = \frac{y_1 - y_2}{\alpha_2 \det(\Sigma)}.
\]

Under the previous assumption, the optimal attention strategy has two stages:
Optimal Attention Allocation Strategy

Theorem

Wlog let $y_1 \geq y_2$. Define

$$t_1 = \frac{y_1 - y_2}{\alpha_2 \det(\Sigma)}.$$

Under the previous assumption, the optimal attention strategy has two stages:

1. At times $t \leq t_1$, DM optimally attends only to attribute 1.
Optimal Attention Allocation Strategy

Theorem

Wlog let $y_1 \geq y_2$. Define

$$t_1 = \frac{y_1 - y_2}{\alpha_2 \det(\Sigma)}.$$

Under the previous assumption, the optimal attention strategy has two stages:

1. At times $t \leq t_1$, DM optimally attends only to attribute 1.
2. At times $t > t_1$, DM allocates attention in the constant fraction

$$\left(\beta_1^t, \beta_2^t\right) = \left(\frac{\alpha_1}{\alpha_1 + \alpha_2}, \frac{\alpha_2}{\alpha_1 + \alpha_2}\right).$$
Example 1: Independent Attributes

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix}, \begin{pmatrix}
6 & 0 \\
0 & 1
\end{pmatrix}\right)
\]

want to learn $\theta_1 + \theta_2$

- then optimally:
 - phase 1: put all attention on learning about θ_1
 - at time $t = 5/6$, posterior covariance matrix is
 \[
 \begin{pmatrix}
 1 & 0 \\
 0 & 1
 \end{pmatrix}
 \]
 - after, split attention equally
Example 2: Correlated Attributes

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix}
\sim \mathcal{N}
\left(
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix},
\begin{pmatrix}
6 & 2 \\
2 & 1
\end{pmatrix}
\right)
\]

want to learn \(\theta_1 + \theta_2 \)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1 \)
 - at \(t = 5/2 \), posterior covariance is
 \[
 \begin{pmatrix}
 3/8 & 1/8 \\
 1/8 & 3/8
 \end{pmatrix}
 \]
 - after, split attention equally
Example 2: Unequal Payoff Weights

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix}
\sim \mathcal{N}
\left(
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix},
\begin{pmatrix}
2 & 1 \\
1 & 1
\end{pmatrix}
\right)
\]

want to learn \(\theta_1 + 2\theta_2 \)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1 \)
 - at \(t = 3/2 \), posterior covariance is
 \[
 \begin{pmatrix}
 3/5 & 1/5 \\
 1/5 & 2/5
 \end{pmatrix}
 \]
 - after, split attention in the vector \((1/3, 2/3)\)
Interpretation of Strategy

Stage 1

Put all attention on learning about attribute 1, where by assumption:

\[y_1 = \alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} \geq \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22} = y_2. \]

Suppose equal payoff weights (\(\alpha_1 = \alpha_2 \)) or independent attributes (\(\Sigma_{12} = \Sigma_{21} = 0 \))

- Above expression reduces to \(\Sigma_{11} \geq \Sigma_{22} \)
- Direct comparison of which attribute the DM is initially more uncertain about
- Focus on the attribute with greater initial uncertainty
Interpretation of Strategy

Stage 1

Put all attention on learning about attribute 1, where by assumption: $\alpha_1 \Sigma_{11} + \alpha_2 \Sigma_{12} \geq \alpha_1 \Sigma_{21} + \alpha_2 \Sigma_{22}$.

with unequal payoff weights, want to “re-weight” uncertainty in proportion to those weights:

- higher $\alpha_1 \Rightarrow$ greater value to learning about attribute 1

with correlation:

- learning about attribute 1 has value also in teaching about attribute 2 (and vice versa)
Interpretation of Strategy

- eventually DM has equal (payoff-reweighted) uncertainty about the two attributes
Interpretation of Strategy

- eventually DM has equal (payoff-rewighted) uncertainty about the two attributes

Stage 2

Devote attention in constant fraction \(\left(\frac{\alpha_1}{\alpha_1 + \alpha_2}, \frac{\alpha_2}{\alpha_1 + \alpha_2}\right)\).
Interpretation of Strategy

- eventually DM has equal (payoff-reweighted) uncertainty about the two attributes

Stage 2

Devote attention in constant fraction \(\left(\frac{\alpha_1}{\alpha_1 + \alpha_2}, \frac{\alpha_2}{\alpha_1 + \alpha_2} \right) \).

- these weights produce an unbiased signal about \(\omega \):

\[
\frac{\alpha_1}{\alpha_1 + \alpha_2} \cdot \theta_1 + \frac{\alpha_2}{\alpha_1 + \alpha_2} \cdot \theta_2 = \frac{1}{\alpha_1 + \alpha_2} \cdot \omega
\]

- efficient aggregation of information in “prior-free” sense

- acquisition of signals in this mixture maintains equivalence of marginal values
optimal information acquisition is “simple”:
- attention allocations do not depend on the history of signal realizations
- DM can map out and implement a deterministic plan for information acquisition from time 0
- note: expect stopping time and optimal action a to depend on signal realizations

and “robust”:
- strategy does not depend on payoff function $u(a, \omega)$
- note: important that the payoff-relevant state does not change
Practical Takeaways

closed-form expressions for optimal information acquisition strategy in this environment

can use this to:
- characterize exact information acquisition strategy
- study various comparative statics (example later)
- simplify larger problems where information acquisition is not the direct object of interest (example later)
General K
Generalized Condition on Prior

Assumption

The prior covariance matrix satisfies

\[|\Sigma_{ij}| \leq \frac{1}{2K - 3} \cdot \Sigma_{ii}, \quad \forall i \neq j. \]
Generalized Condition on Prior

Assumption

The prior covariance matrix satisfies

\[|\Sigma_{ij}| \leq \frac{1}{2K - 3} \cdot \Sigma_{ii}, \quad \forall i \neq j. \]

- limits size of covariances (relative to variances)
- for case of \(K = 2 \), reduces to \(|\Sigma_{ij}| \leq \Sigma_{ii} \) (covariances smaller than variances), which implies previous condition for \(K = 2 \)
- condition becomes more stringent for larger \(K \)
Theorem

Under the preceding assumption, there are (up to) K stages of information acquisition, identified with the increasing times

$$0 = t_0 \leq t_1 \leq \cdots \leq t_{K-1} < t_K = +\infty$$

and nested sets

$$\emptyset = B_0 \subsetneq B_1 \subset \cdots \subsetneq B_{K-1} \subsetneq B_K = \{1, \ldots, K\}.$$
Theorem

Under the preceding assumption, there are (up to) K stages of information acquisition, identified with the increasing times

$$0 = t_0 \le t_1 \le \cdots \le t_{K-1} < t_K = +\infty$$

and nested sets

$$\emptyset = B_0 \subsetneq B_1 \subset \cdots B_{K-1} \subsetneq B_K = \{1, \ldots, K\}.$$

At each stage $[t_{k-1}, t_k)$:

- the optimal attention level is constant
- and supported on the sources in B_k.
Theorem

Under the preceding assumption, there are (up to) K stages of information acquisition, identified with the increasing times

$$0 = t_0 \leq t_1 \leq \cdots \leq t_{K-1} < t_K = +\infty$$

and nested sets

$$\emptyset = B_0 \subsetneq B_1 \subset \cdots B_{K-1} \subsetneq B_K = \{1, \ldots, K\}.$$

At each stage $[t_{k-1}, t_k)$:

- the optimal attention level is constant
- and supported on the sources in B_k.

At the final stage, attention is proportional to the weight vector α.
Example

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix},
\begin{pmatrix}
4 & 0 & 0 \\
0 & 4 & -1 \\
0 & -1 & 3
\end{pmatrix}
\end{pmatrix}
\]

want to learn \(\omega = \theta_1 + \theta_2 + \theta_3 \)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1 \)
Example

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix},
\begin{pmatrix}
4 & 0 & 0 \\
0 & 4 & -1 \\
0 & -1 & 3
\end{pmatrix}
\end{pmatrix}
\]

want to learn \(\omega = \theta_1 + \theta_2 + \theta_3 \)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1 \)
 - at \(t = 1/12 \), marginal values of \(\theta_1 \) and \(\theta_2 \) have equalized
unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix}
, \\
\begin{pmatrix}
4 & 0 & 0 \\
0 & 4 & -1 \\
0 & -1 & 3
\end{pmatrix}
\end{pmatrix}
\]

want to learn \(\omega = \theta_1 + \theta_2 + \theta_3 \)

then optimally:

- phase 1: put all attention on learning about \(\theta_1 \)
 - at \(t = 1/12 \), marginal values of \(\theta_1 \) and \(\theta_2 \) have equalized
- phase 2: divide attention between \(\theta_1 \) and \(\theta_2 \) in constant mixture \((4/7, 3/7)\)
 - at \(t = 13/44 \), all three marginal values are the same
Example

- unknown attributes

\[
\begin{pmatrix}
\theta_1 \\
\theta_2 \\
\theta_3
\end{pmatrix}
\sim \mathcal{N}
\begin{pmatrix}
\begin{pmatrix}
\mu_1 \\
\mu_2 \\
\mu_3
\end{pmatrix},
\begin{pmatrix}
4 & 0 & 0 \\
0 & 4 & -1 \\
0 & -1 & 3
\end{pmatrix}
\end{pmatrix}
\]

want to learn \(\omega = \theta_1 + \theta_2 + \theta_3 \)

- then optimally:
 - phase 1: put all attention on learning about \(\theta_1 \)
 - at \(t = 1/12 \), marginal values of \(\theta_1 \) and \(\theta_2 \) have equalized
 - phase 2: divide attention between \(\theta_1 \) and \(\theta_2 \) in constant mixture \((4/7, 3/7)\)
 - at \(t = 13/44 \), all three marginal values are the same
 - phase 3: split attention equally across sources
Some Properties of the Optimal Strategy

- step-like structure:
 - once DM starts acquiring information from a source, always acquires information from that source
 - progressively adds in new sources

- at each stage, information acquisition is constant

- the times t_k and sets B_k are “history-independent”: can be mapped out from $t = 0$

- strategy holds for all payoff functions $u(a, \omega)$
at every time t, past attention levels integrate to a **cumulated attention vector** $q(t) = (q_1(t), \ldots, q_K(t))$

describes how much attention has been paid to each attribute
Proof Sketch 1/4: Preliminaries

- at every time t, past attention levels integrate to a **cumulated attention vector** $q(t) = (q_1(t), \ldots, q_K(t))$

- describes how much attention has been paid to each attribute

- let $V(q(t))$ be the posterior variance of ω at time t
Proof Sketch 1/4: Preliminaries

- at every time t, past attention levels integrate to a **cumulated attention vector** $q(t) = (q_1(t), \ldots, q_K(t))$

- describes how much attention has been paid to each attribute

- let $V(q(t))$ be the posterior variance of ω at time t

- warm-up: suppose there is a fixed stopping time T
at every time t, past attention levels integrate to a \textit{cumulated attention vector} $q(t) = (q_1(t), \ldots, q_K(t))$

describes how much attention has been paid to each attribute

let $V(q(t))$ be the posterior variance of ω at time t

warm-up: suppose there is a fixed stopping time T

$q(T)$ should minimize $V(q)$ among all vectors q that allocate T units of attention (Hansen-Torgersen)
Proof Sketch 1/4: Preliminaries

- at every time t, past attention levels integrate to a **cumulated attention vector** $q(t) = (q_1(t), \ldots, q_K(t))$
- describes how much attention has been paid to each attribute
- let $V(q(t))$ be the posterior variance of ω at time t
- warm-up: suppose there is a fixed stopping time T
- $q(T)$ should minimize $V(q)$ among all vectors q that allocate T units of attention (Hansen-Torgersen)
- (note: “order” doesn’t matter, just need to integrate to best cumulated attention vector at time T)
Proof Sketch 2/4: Uniform Optimality

Definition
For each time t, define the t-optimal attention vector

$$n(t) := \arg\min_{q : \|q\|_1 = t} V(q)$$

- suppose it were possible to achieve $n(t)$ at every t
 \[\implies\] minimize posterior variance at every time t

- call such a strategy is uniformly optimal

- if a uniformly optimal strategy exists, it is optimal for all payoff criteria (Greenshtein)

- key question is whether a uniformly optimal strategy exists.
Proof Sketch 3/4: Monotonicity of $n(t)$

- sufficient and necessary condition: $n(t)$ weakly increases in t in all coordinates.

- in this case, optimal attention levels β^t are simply the time derivatives of $n(t)$

- when might this fail? example
 - strong complementarity/substitutability across signals
 - locally best reductions in variance need not be best given opportunity to acquire information on a larger time interval

- work with the Hessian of the posterior variance function V

- condition on prior limits extent to which learning about attribute i affects value to attribute j (size of cross-partial)
Proof Sketch (4/4): Step Structure

- at each stage k, agent optimally divides attention among the k attributes in B_k

- specific mixture of information maintains equivalence of marginal values of those k attributes

- reduces the marginal value of each of the k attributes

- eventually, some new attribute will have the same marginal value as the first k attributes

- at this point the agent expands his observation set to include that new attribute

- repeat reasoning above
What Can We Say for Arbitrary Priors?

- main result holds for a set of prior beliefs (characterized by the assumption)
- suppose DM has a prior outside of this set
- under optimal sampling, his posterior belief will eventually enter that set
- at that point the characterization again applies, so e.g.:

Corollary

*Starting from any prior belief, the optimal information acquisition strategy is eventually a constant attention level proportional to the weight vector α.***
Application 1:
Binary Choice
Binary Choice

- literature beginning with drift-diffusion model (Ratcliff, 1978)
 - two goods with unknown payoffs θ_1 and $-\theta_2$
 - agent can devote effort towards learning about these payoffs before making his decision

- DDM: agent’s prior is supported on two values $\theta_L < \theta_H$, uncertainty is only over which good is better

- Fudenberg, Strack, and Strzalecki (2016): “uncertain-difference” DDM with $(\theta_1, -\theta_2) \sim \mathcal{N}(\mu, \Sigma)$

- result from FSS: assume $\Sigma = I$, then optimal attention choices constant at $(1/2, 1/2)$
this problem is nested in our setting as case of $\alpha_1 = \alpha_2 = 1$
(given which our characterization holds for all priors)
Binary Choice

- this problem is nested in our setting as case of $\alpha_1 = \alpha_2 = 1$
 (given which our characterization holds for all priors)

Corollary

Starting from any prior with $\Sigma_{11} \geq \Sigma_{22}$, the DM first attends to attribute 1 exclusively, then switches to equal attention at time

$$t_1 = \frac{\Sigma_{11} - \Sigma_{22}}{\det(\Sigma)}.$$
Binary Choice

- this problem is nested in our setting as case of $\alpha_1 = \alpha_2 = 1$
 (given which our characterization holds for all priors)

Corollary

Starting from any prior with $\Sigma_{11} \geq \Sigma_{22}$, the DM first attends to attribute 1 exclusively, then switches to equal attention at time

$$t_1 = \frac{\Sigma_{11} - \Sigma_{22}}{\det(\Sigma)}.$$

- generalizes the FSS result:
 - allows for correlation and asymmetry between unknown payoffs
 - applies “off-path” as well
- can use to derive comparative statics
Comparative Static in Initial Uncertainty

e.g. how does more initial uncertainty about an attribute affect the time path of attention?

Corollary

Suppose $\Sigma_{11} > \Sigma_{22}$ (more initial uncertainty about attribute 1).

1. If $|\Sigma_{12}| < \Sigma_{22}$, increase in Σ_{11} leads to weakly higher attention to attribute 1 at every time.

2. Otherwise, increase in Σ_{11} leads to uniformly lower attention.
Comparative Static in Initial Uncertainty

e.g. how does more initial uncertainty about an attribute affect the time path of attention?

Corollary

Suppose $\Sigma_{11} > \Sigma_{22}$ (more initial uncertainty about attribute 1).

1. If $|\Sigma_{12}| < \Sigma_{22}$, increase in Σ_{11} leads to weakly higher attention to attribute 1 at every time.

2. Otherwise, increase in Σ_{11} leads to uniformly lower attention.

- Increasing initial uncertainty about attribute 1 changes the “switch point” between stages 1 and 2.
- Whether it moves it earlier or later depends on how correlated the attributes are.
Intuition

suppose $|\Sigma_{12}|$ is small:

- then greater initial uncertainty about θ_1 increases the value to learning about it
- so increase in Σ_{11} results in more attention paid to attribute 1
suppose $|\Sigma_{12}|$ is small:

- then greater initial uncertainty about θ_1 increases the value to learning about it
- so increase in Σ_{11} results in more attention paid to attribute 1

but large $|\Sigma_{12}|$ can reverse this:

- information about θ_1 also reveals about θ_2
- increasing Σ_{11} (for fixed Σ_{12}, Σ_{22}) *decreases correlation*, less externality
- faster for uncertainty about θ_1 to be reduced *relatively*
- this effect dominates when prior correlation is significant
Application 2:
Competing Information Providers
Competing Information Providers

- new sources have expertise on a topic (e.g. Mueller report), and provide information on this over time
- want to maximize time spent on their site
- choose the informativeness of news articles (i.e. reveal everything you know all at once vs. trickle it out slowly)
- in talk assume two sources, but see paper for extension to K sources
The Game

\[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix}
\sim \mathcal{N}\left(\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix}, \begin{pmatrix}
1 & \rho \\
\rho & 1
\end{pmatrix}\right)
\]

- payoff-relevant state \(\theta_1 + \theta_2\)
The Game

- \[
\begin{pmatrix}
\theta_1 \\
\theta_2
\end{pmatrix}
\sim \mathcal{N}
\left(
\begin{pmatrix}
\mu_1 \\
\mu_2
\end{pmatrix},
\begin{pmatrix}
1 & \rho \\
\rho & 1
\end{pmatrix}
\right)
\]

- payoff-relevant state \(\theta_1 + \theta_2\)

- each source \(i = 1, 2\) freely chooses \(\sigma_i\), providing \(\theta_i + \mathcal{N}(0, \sigma_i^2)\) per unit of time

- source \(i\)'s payoff is the discounted average attention

\[
\int_0^{\infty} e^{-rt} \beta_i^t \, dt
\]
The Game

\[
\left(\begin{array}{c}
\theta_1 \\
\theta_2
\end{array} \right) \sim \mathcal{N} \left(\left(\begin{array}{c}
\mu_1 \\
\mu_2
\end{array} \right), \left(\begin{array}{cc}
1 & \rho \\
\rho & 1
\end{array} \right) \right)
\]

- payoff-relevant state \(\theta_1 + \theta_2 \)

- each source \(i = 1, 2 \) freely chooses \(\sigma_i \), providing

\[
\theta_i + \mathcal{N}(0, \sigma_i^2)
\]

per unit of time

- source \(i \)'s payoff is the discounted average attention

\[
\int_0^\infty e^{-rt} \beta_i^t \, dt
\]

- note: not necessary to impose a cost to providing more precise information, equilibrium will have interior choices of \(\sigma_i \)
Equilibrium

Proposition

The unique equilibrium is a pure strategy equilibrium \((\sigma^*, \sigma^*)\) with

\[
\sigma^* = \sqrt{\frac{1 - \rho}{2r}}
\]

with \(\rho\) being DM’s prior correlation and \(r\) being the news sources’ discount rate.

- signals are more precise in equilibrium (lower \(\sigma^*\)) when news sources are less patient (larger \(r\))
Role of Patience

\[\sigma^* = \sqrt{\frac{1 - \rho}{2r}}. \]

Increasing noise \(\sigma_i \) (i.e. provide lower-quality information) has two opposing effects on attention:

1. DM more likely to attend to other source initially
2. But in the long run, source \(i \) receives more attention: \(\frac{\sigma_i}{\sigma_i + \sigma_j} \)
Role of Patience

\[\sigma^* = \sqrt{\frac{1 - \rho}{2r}}. \]

increasing noise \(\sigma_i \) (i.e. provide lower-quality information) has two opposing effects on attention:

1. DM more likely to attend to other source initially
2. but in the long run, source \(i \) receives more attention:

\[\frac{\sigma_i}{\sigma_i + \sigma_j} \]

\(\Rightarrow \) if news sources are patient (small \(r \)), they provide noisy info
Role of Patience

\[\sigma^* = \sqrt{\frac{1 - \rho}{2r}}. \]

increasing noise \(\sigma_i \) (i.e. provide lower-quality information) has two opposing effects on attention:

1. DM more likely to attend to other source initially
2. but in the long run, source \(i \) receives more attention: \(\frac{\sigma_i}{\sigma_i + \sigma_j} \)

\[\Rightarrow \text{ if news sources are patient (small } r \text{), they provide noisy info} \]
\[\Rightarrow \text{ if news sources are impatient (large } r \text{), they compete to be chosen in stage 1} \]
we study the problem of dynamic allocation of attention across diverse information sources

under condition on prior, solution is simple/tractable/robust

useful towards various applications
Thank You!
Liang, Mu, and Syrgkanis (working paper):

- unknown attribute values $\theta_1, \ldots, \theta_K$ are jointly normal
- payoff-relevant state $\omega = \langle \alpha, \theta \rangle$ with a known and positive weight vector α
- at each discrete period t, agent chooses from among K information sources
- choice of source i produces observation of

$$Y_i = \theta_i + \varepsilon_i, \quad \varepsilon_i \sim \mathcal{N} \left(0, \frac{1}{\Delta} \right)$$
suppose in continuous-time model, DM’s attention must be constant and degenerate over each of \([0, \Delta), [\Delta, 2\Delta), \text{ etc.}\)

the difference \(X_i^{t+\Delta} - X_i^t\) is equivalent to the signal \(\Delta \cdot Y_i\) in the discrete-time model

taking \(\Delta \to 0\) thus yields our main setting where attention choices can be changed continuously

but in discrete-time, there is an “integer problem,” since signals are non-divisible

continuous-time formulation allows for a sharper characterization of the optimal info acquisition strategy, and conditions needed for this characterization to hold

settings share an optimality of “myopic” acquisition
Counterexample

- unknown attributes
 \[
 \begin{pmatrix}
 \theta_1 \\
 \theta_2
 \end{pmatrix}
 \sim \mathcal{N}
 \left(
 \begin{pmatrix}
 \mu_1 \\
 \mu_2
 \end{pmatrix},
 \begin{pmatrix}
 10 & -3 \\
 -3 & 1
 \end{pmatrix}
 \right),
 \]

- want to learn \(\theta_1 + 4\theta_2 \)

- at all times \(t \leq 1/4 \), \(t \)-optimal vector is \((t, 0)\)

- for \(t \in (1/4, 1] \), \(t \)-optimal vector is
 \[
 \left(\frac{-t + 1}{3}, \frac{4t - 1}{3} \right)
 \]

- thus as budget increases from \(1/4 \) to 1, optimal amount of attention devoted to \(\theta_1 \) is \textit{decreasing}

- so the \(t \)-optimal attention vectors are not monotone in \(t \)
Counterexample Intuition

- initially, marginal value of learning about θ_1 is strictly largest \implies learn about θ_1
- at $t = 1/4$, marginal values have equalized
- turn from “first-order” comparison of marginal values to “second-order” comparison of mixtures between signals
- optimal mixture depends on whether the signals are substitutes or complements
- at $t = 1/4$, learning about θ_1 and θ_2 are substitutes
- information about attribute 1 has a large negative impact on the marginal value of information about attribute 2
- agent would optimally like to take away some attention from attribute 1 and re-distribute it to attribute 2
Transformation

Given σ_1, σ_2, we can normalize to unit signal precision:

- Define $\tilde{\theta}_i = \theta_i / \sigma_i$
- Then signal $\theta_i + \mathcal{N}(0, \sigma_i^2)$ is equivalent to $\tilde{\theta}_i + \mathcal{N}(0, 1)$, returns our model
Transformation

Given σ_1, σ_2, we can normalize to unit signal precision:

- Define $\tilde{\theta}_i = \theta_i / \sigma_i$

- Then signal $\theta_i + \mathcal{N}(0, \sigma_i^2)$ is equivalent to $\tilde{\theta}_i + \mathcal{N}(0, 1)$, returns our model

- Payoff-relevant state rewritten as $\sigma_1 \tilde{\theta}_1 + \sigma_2 \tilde{\theta}_2$, so $\tilde{\alpha}_i = \sigma_i$

- Transformed prior covariance matrix of $\tilde{\theta}$ is

$$\tilde{\Sigma} = \begin{pmatrix}
\frac{1}{\sigma_1^2} & \frac{\rho}{\sigma_1 \sigma_2} \\
\frac{\rho}{\sigma_1 \sigma_2} & \frac{1}{\sigma_2^2}
\end{pmatrix}$$
Assumption satisfied since

\[
\sigma_1 \left(\frac{1}{\sigma_1^2} + \frac{\rho}{\sigma_1 \sigma_2} \right) + \sigma_2 \left(\frac{\rho}{\sigma_1 \sigma_2} + \frac{1}{\sigma_2^2} \right) = (1 + \rho) \left(\frac{1}{\sigma_1} + \frac{1}{\sigma_2} \right) \geq 0.
\]

Can thus use theorem to find attention levels given any \(\sigma_1, \sigma_2 \).
Role of Correlation

\[\sigma^* = \sqrt{\frac{1 - \rho}{2r}}. \]

- if prior is negatively correlated (smaller \(\rho \)), signals are *complements*

 \[\implies \text{stage 1 is shorter} \]

- thus more competition for the long run, and sources choose to provide noisier signals